Impact of CYGNSS Data on Hurricane Analyses and Forecasts in a Regional OSSE Framework

Brian McNoldy¹, Bachir Annane², Javier Delgado², Lisa Bucci¹, Robert Atlas³, Sharanya Majumdar¹

¹ Univ. of Miami/RSMAS, Miami, FL
² Univ. of Miami/CIMAS and NOAA/AOML/HRD, Miami, FL
³ NOAA/AOML, Miami, FL

OSSE Framework

The regional OSSE (Observing System Simulation Experiment) framework described here was developed at NOAA/AOML and UM/RSMAS and features a high-resolution regional nature run embedded within a lower-resolution global nature run. Simulated observations are generated and provided to a data assimilation scheme which provides analyses for a high-resolution regional forecast model.

Experiments and Results

- Two synthetic CYGNSS datasets generated to span the WRF nature run.
 - "low resolution": ~25km effective footprint... nominal product
 - "high resolution": ~12km effective footprint... experimental product (much greater noise in the retrieval results in many dropped data points after quality control is applied)
- All experiments listed use identical configurations of GSI for data assimilation and HWRF for forecasts.

1) CONTROL: conventional data minus scatterometers
2) PERFECT_UV: CONTROL plus all available high-resolution CYGNSS data points; wind speed and direction are interpolated from WRF nature run and assumed to have zero error
3) PERFECT_SPD: CONTROL plus all available high-resolution CYGNSS data points; only wind speed is interpolated from WRF nature run and assumed to have zero error
4) REAL_SPD: CONTROL plus quality-controlled low-resolution CYGNSS data points; synthetic realistic wind speeds and errors are used
5) REAL_SPD_HI: CONTROL plus quality-controlled high-resolution CYGNSS data points; synthetic realistic wind speeds and errors are used

Analysis of Storm Structure

- Addition of CYGNSS surface wind observations generally improves the CONTROL run (brings it closer to NATURE) in terms of symmetry, peak intensity, central pressure, and wind radii.

- However, due to the nature of GSI, if observation coverage is not symmetric in a TC, the analysis will suffer. This example is from 36 hours after the previous example.

Summary

- Assimilation of CYGNSS data with GSI almost always improves hurricane intensity and track analyses
- Assimilation of CYGNSS data with GSI almost always improves large-scale analyses of wind, pressure, temperature, etc.
- Assimilation of CYGNSS data with GSI almost always improves hurricane analyses in GSI
- GSI analyses are very sensitive to the exact location of the observational data... symmetry and coverage affect the result
- The stronger a storm is in an analysis, the more severely the short-range forecast suffers from vortex spin-down and adjustment
- We have very few samples from one storm, so error statistics are not robust, but provide some guidance

Acknowledgements

Funding for this research is from NASA Award NNL13AQ00C. We would like to thank the CYGNSS Science Team, the NOAA Office of Weather and Air Quality, the NOAA HFIP program for computing support, and David Nolan at UM/RSMAS for the WRF nature run.